SELF-SIMILAR PROBLEM OF THE MOTION OF A
PLANE LAYER OF HEATED MATERIAL WITH AN
ARBITRARY EQUATION OF STATE

V. N. Kondrat'ev and I. V. Nemchinov UDC 532.529,5+536.423,1

The self-similar problem of the nonstationary motion of a plane layer of material in which
energy from an external source is released for values of the flux density q; on the boundary
which are constant in time is considered. The self-similar variable is ¢ = m/t, where m is
the Lagrangian mass coordinate and t is the time. The characteristic values of the velocity,
density, and pressure do not vary with time. For a self-similar problem the energy flux den-
sity q must also depend only on the self-similar variable. In this case q () can be an ar-
bitrary function of its argument and can be given by a table. Examples are presented of ac-
tual physical processes in which the mass of the energy-release zone increases linearly with
time. The equation of state can have an arbitrary form, including specification by a table.
The gaseous state of matter for an arbitrary variable adiabatic exponent, the condensed state,
and a two-phase state can be described. A solution of the self-similar problem is presented
for the heating of a half-space bounded by a vacuum for a certain specific equation of state
and various flux densities qq and velocities M of the advance of the energy-release zone.

1. We consider the plane nonstationary motion of a material containing distributed energy sources in
the hydrodynamic approximation., The corresponding system of equations has the form

ov ou
;e =0; (1.1)

du , 0p
7 tom="0

@

de av

where u is the velocity, p is the pressure, v is the specific volume (v = 1/p, where p is the density), e is
the interval energy per unit mass, t is the time, m is the Lagrangian mass coordinate, and f is the energy
release (f > 0) or loss (f < 0) per unit mass per unit time. The system (1.1) must be supplemented by the
equation of state

p=ple, p), (1.2)

which can have an arbitrary form, including specification by a table. In the special case of matter in'the
gaseous state,

p=ep(y — 1), (1.3)

where 7 is the adiabatic exponent which, in turn, can be a function of e and p. The quantity f is related
to the energy flux density q by the relation

f=—dglom. (1.4)
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To determine f or q it i’ 1ecessary to specify the energy-transport mechanism. We assume that the time
dependence of the flux density through the mass has the special form

m
;"

g=q(p)=gq (u), = (1.5)

Here qgg is the flux density at the point m = 0 and is constant in time. Equation (1.4) takes the form

F dg’
f=‘t—1 F'_—'-‘qod%.

Henceforth we assume that F~ 0 ag m — £ «, and that F (i) falls off fast enough so that its integral with
respect to i is finite.

We assume that at time t = 0 the material in each of the regions m > 0 and m < 0 is uniformly heated
and has a constant density independently of whether it ic at rest or moving with a constant velocity:

e=¢ey, P=Pg, U=Ug, m > 0;
e=e,, P=pg, U=U;, m<0.

If = 0 everywhere, i.e., if there is no energy release in the material, the problem under consideration is
an ordinary problem of the decay of an arbitrary discontinuity {1].

In the special case when the material is bounded by a vacuum only the half-space m > 0 is considered;
on its boundary the condition

p‘=0, m=0',.'

is satisfied. The other limiting case is the motion of a piston with a given veloeity u(0, t) = u, = const. In
the general case the motion develops close to the boundary between two media, and shock waves, compres-
sion or rarefaction waves, are propagated from this boundary through the material. As m — © we have the
unperturbed state: e-~ey, v = vy, u— uy, and as m —~—o wealsohave an unperturbed region: e —~ ey, v—
Vi, 1~ Uj.

The equation of state can be different in the regions m > 0 and m < 0 if different materials are in con-
tact at m = 0 or if there is one material in different physical states in these regions. The equation of state
can also change along any lines m = Mgt. Such lines can be shock waves propagating with constant velocity
Mg on which the physieal state of the material or its chemical composition varies significantly. In particu-
lar, the adiabatic exponent ¥ can be changed as a consequence of dissociation or ionization. When there is
no energy release anywhere except in an infinitely narrow zone behind the front of a shoek wave moving
with the constant "veloeity" Mg from the point m = 0, i.e., F = d(u —Hg), we have to deal with an ordinary
detonation. It is known that the problem of a detonation wave is self-similar for an arbitrary equation of
state [2],

The problems of the decay of an arbitrary discontinuity in a material with a certain special energy-
release law (1.4) is also self-similar:

e=e(w), p=p(p), v=v(p), u=u(), p="2.

We note that the characteristic values of the internal energy, density, and pressure are constant in time,
which ensures self-similarity for an arbitrary equation of state (1.2).

After transforming to the self-similar variable # Egs, (1.1) have the form

de 4 g, Wy,
b tp=0 gty =0 (1.6)
de d
b(F + PR =FW (1.7

and are supplemented by Eq. (1.2).
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We note that the velocity u can be eliminated from (1.6) to give

dv dp
Wt =0 (1.8)

The problem is particularly simple to analyze if the energy release has the form

where 6 is the Dirac delta function and Py -is the coordinate of the "deflagration™ front which does not
necessarily coincide with the shock wave and must be specified on the basis of further physical considerations.,
In this case the parameters ahead of the energy-release zone are related to those behind it by a conserva-
tion law, and the motion outside the energy-release zone is adiabatic. This situation arises, for example,
when intense fluxes of optical radiation act on condensed opaque material [3,4]. For relatively low flux den-
sities the vapors formed are transparent to the incident radiation, while the radiation penetrates only smalil
distances in condensed matter. In the limit it can be assumed that an infinitely narrow energy-release zone
advances together with the evaporation wave, an infinitely narrow phase-transition zone. For a constant
flux density and completely transparent vapors the evaporation wave moves with constant velocity, and be-
hind the wave the Jouguet rule is satisfied (in general, this isnot obhgatory [5, 6]). In the examples pres-
ented below only volumetric energy release will be considered.

This problem was discussed in [7, 8] for the special cace of the escape of an ideal gas with ¥ = const
into a vacuum when the function F (&) has the special form

F=Ap—*: (1.9)

It was assumed that the vapor disperses into the vacuum behind a certain evaporation surface moving with
a constant velocity within the material.

The following evaporation conditions were formulated in [7]: the evaporation surface is at the point
my, (1), where the temperature in the condensed material rose from the initial value to a certain evaporation
temperature, and energy equal to the heat of vaporation Q was liberated. An analytic solution of system
(1.7, (1.8) was found in [7] for the flow of a gas. In this calculation the Jouguet rule was used without any
justification. It was pointed out in [8] that this is a particular solution of the problem under consideration
and that other distributions of parameters are possible, in particular, discontinuous distributions with a
shock wave at a certain distance from the evaporation wave in the gaseous region. In this case the Jouguet
rule is not satisfied on the evaporation surfacg. In [7, 8] the evaporation surface is understood to be an in-
finitely narrow zone whose existence for (1, 9,"’1s not justified. The introduction of such a discontinuity (con-
ventional evaporation boundary) does not have any special advantages aside from the possibility of using
only the simple equation of state (1.3) with ¥ = const, since it is natural to generalize such a problem [and,
moreover, for an arbitrary function F (¢) and not just for (1.9)] to the case of an arbitrary equation of state
including the equation for a two-phase state. The latter enables us to consider the structure of the phase-
transition zone. We note that at pressures of the order of the critical pressures (in the van der Waals
sense) and higher, regions with different phases cannot generally be rigorously delimited.

We present an example of a physical process in which the energy-release zone can advance with con-
stant veloeity from the boundary of the material into its interior.

Suppose the material is heated by radiation which has a continuous spectrum, and that the spectral
absorption coefficient ®¢ is the following function of the photon energy €, the internal energy e, and the den-

sity p:
v=K (e,0)e™5. (1.10)

In this case we assume that the function K characterizing the change in transparency of the material with
temperature and density is an arbitrary function of its arguments. Tn general, the variables in (1.10) can-
not be separated. However, this may be possible to a sufficient accuracy in a certain range of temperatures
and densities characteristic of the problem under discussion and in a certain (the most important) spectral
range. In particular, this occurs for radiation which is hard enough so that the average photon energy is
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considerably higher than the first ionization potentials; i.e., the energy is absorbed in rather deep atomic
shells. Then the heating of the material to the temperature of the phase transition, its evaporation, and
even its ionization, if not too strong, does not lead to a significant change in optical (in the broad sense of
the word) properties of the material and the function K is constant. A power law dependence of % on € is
characteristic for the indicated range of photon energies [9, 10] with a typical value of s = 3,

If the form of the spectrum remains unchanged, for example, Planckian, and the characteristic energy
of the source photons increases with time according to the power law

€ =BfY/4,

the characteristic absorption coefficient ®x decreases with time and the characteristic mass of heated
material increases linearly with time.

We note that the law of energy release in the mass in the region where most of the energy is liberated
(@/qq > 0.1-0.2) is described in the first crude approximation by a simple exponentially decreasing function.
This means that in this region the absorption coefficient at various depths, averaged over the spectrum,
does not differ too strongly from the reference value calculated from the spectrum for an effective optical
thickness of the order of unity [11],

We consider another example. Recently great interest has been aroused by experiments on the pulsed
heating of material using powerful electron accelerators [12]. If we restrict ourselves to relatively dense
material, the energy release in it occurs mainly as a result of ionization losses, but the scattering of the
electron beam must be taken into account also. In the propagation process the energy of the electrons
decreases continuously from the initial value €j. The results of calculations of corresponding problems
{13-15] obtained by the Monte Carlo method for a fixed rather than a broad range of initial electron ener-
gies can be written in the form '

q =944 (2), z=Kmeg". (1.11)

The function q'(z) is commonly given in tabular form. Suppose the accelerator voltage and the energy of
the incident electrons g; increase with time according to the power law

go=cit®, n=14/s.

Then the energy release satisfies condition (1.5): the mass heated by electrons increases linearly with
time. We note that when n # 1/s and/or q; ® const, and €% varies according to a power law, self-similar
problems of the type [16, 17] can be formulated, but not for an arbitrary equation of state. When condition
(1.5) is not satisfied, the self-similar problem under consideration can nevertheless be used to investigate
the effect of both the equation of state and the law of energy release in the mass on the characteristics of
the motion.

2. We consider the solution of the self-similar problem using an equation of state which approximately
describes both the gaseous and condensed states: '

p=Dpx(p}+ple — ex(p) 1T,

where we assume the dependence of the Gruneisen constant T on e and o, and the form of the "elastic”
("cold") components of pressure and internal energy are the same for various materials (materials of a
single type described by a universal equation of state):
I'=ri{e¥,0Y), er—=ciet =e¢—ey,
Px=BpY (p): ex = (0), 0V =plpy ¢§ = Buy= Blp,
Here B is the bulk modulus and p, is the normal density. We assume that the variation of flux density q

through the material is not altered by a change in the characteristic "velocity™ M of propagation of the en-
ergy-release zone in the material:

s m rin
g = g9 (E) =49 (T}')
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We make a change of variables,
e = evc%, p=RBpY, U= couv,
P=p7Po §=pCha7s 1= pycoV.

It is obvious that the solution of the problem in the given form pY (ov) and ai(p'/ M) will depend only on the
parameters M? and q°:

We present the solution for an energy release described by the very simple law
Y
q = exp(—— ;—70), (2.1)

and the cold components of pressure and energy, as in [18], are given by the simple analytic expressions

- 1 n . Vo n—k pn——i pk_i
Py = " —0"l e ===y ti=it e

n—k

Here for convenience in writing the superscript \/ on (pv)has been omitted. In the specific variants de-
scribed below n = 3, k =2, I = 1, The solutions was constructed for a wide range of values of the parame-
ters M” and q°, namely, 10~* = qy = 104, and 0.1 = M? = 10. According to (1.5) the heated mass is in-
finitesimal as t — 0. In the examples considered above the mass actually remains finite; Eqs. (1,10) and
(1.11) are not valid for too small €, Nevertheless, for small thicknesses the energy-release zones are gen-
erally broadened by heat conduction., Therefore, using the scheme in [18] a problem which is not self-sim-
ilar was calculated with the energy-release law

f=ex __m
IESM T IRT mo)

which goes over into (2.1) as t —= o,

Calculations showed that for t > my/M the solution reaches the self-similar regime. This is easy to
see from Fig. 1 which shows the pressure pY as a function of the self-similar coordinate nV at different
times for gy = 0.5 and M° = 0.5. Curves 1-4 correspondto ¢t =11, 77, 297, and 1257,

Figure 2 shows p” as a function of pV for the values of q° noted on the curves obtained by solving
the self-similar problem for M° = 1/6. The shock wave, which is a sound wave for small q°, is clearly

791



Prlo T visible. Its front is at the point uV=1, i.e., at m = pycet. For large
] I qp the shock wave is strong. The open curve represents the results of
\ scaling the value of the maximum pressure on the shock front for large
15 L q according to the law which holds for a pure gaseous equation of state,
\ i.e., when the quantities B andCgare unessential parameters. We ob-
04 / \\\ tain this law from qualitative arguments, although it can be found purely

06

formally also. The characteristic density of released energy G in the
energy-release zone remains constant at all times. In self-similar

K motion a constant fraction of the released energy is transformed into

1,667

92

kinetic energy; i.e., u~ VG, The value of the maximum pressure can
be estimated from the condition p,, ® Mu ® VqM, from which it follows
2 4

g(g%m% that pyy/qo ~ ¥ M/ .

Fig. 3 Figure 3 shows the dependence of p,,/qy on q°/M° for various M'.
The values of M’ are marked on the curves. For large q° all the curves
coincide, which is in accord with the above arguments. For small q° the ratio pm/ qqg reaches a constant
value. The presence of a maximum of pm/ qq should be noted. This result can also be obtained by simpli-
fying the whole problem.

3. We find the velocity of sound for an arbitrary equation of state p = p(e, v). We have the natural
relation

dp = pode + pudo, pe=3, o= (3.1
For adiabatic flow
j—:s =—p. (3.2)
It follows from (3.1)and (3.2) that
pic? = — %—f,—’ = PPe — P (3.3)

We transform to a system of self-similar equations. By using (3.1), from (1.8) we obtain

' v de
(1* 4 po) g Py = 0- (3.4)
Using (3.3), from (3.4) and (1.7) we find
; F [u?—(p%?— pp,
=) (3.5)

We note that for the equation of state of an ideal gas (1.3) and for (3.1) when I' = ¥ —1 = const we have

—1
pe=?_17—-, ppe=92% ('V—— 1).

We now consider the case of relatively low temperatures when pc varies only slightly from its value pgcg
under normal conditions and the pressure p is small in comparison with pgc%. Consequently, we have
plcl—pp, ® pocf. When M « 1 or M « pgeq ("subsonic™ propagation of the energy-release zone) most of
the energy release occurs in the region p << pycy or pv 1. Therefore in the first approximation the ex-
pression in square brackets on the right-hand side of Eq. (3.5) ean be set equal to unity, giving

de
—ug=F ‘ (3.6)
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Thus the motion has practically no effect on the magnitude of the internal energy; e is given by the same
expression as if dv/dp =0 of if v = const. Substituting (3.6) into (3.4) and using the same simplifying as-
sumptions as above, we obtain

u
1
P=ZS
]

If we consider forms of energy-release laws for which F is negligibly small in the region ¢ ® pyey, we ob-
tain

x
— 1y gM dg’
p=<\’_p_c>3LH(x), H(x):jlx(—d—qx)dx- (3.7
(1} 0

Here we transform to the coordinate x = 4/M. For q' = exp (—x) we obtain

H(z)=1—(z+ 1)exp(—z). (3.8)

Calculations show that this expression describes the pressure profile fairly well up to the shock wave
Figure 4 shows the pressure p and the specific volume v as functions of the self-similar variable for M =
1/6 and ¢° = 10™% The dashed-dot curve is for Egs. (3.7) and (3.8), and the solid curve represents the re-
sults of a numerical calculation. It is clear that the difference is appreciable only close to the shock front,
We note that the density is everywhere only slightly different from normal.

It follows from (3.7) that for small qO, i.e., in the thermoelastic region, the pressure Py 18 propor-
tional to qp, where for M? < 1 we obtain an increase of Pm With M? in agreement with the data shown in
Fig. 3.

When M? > 1 we again use qualitative estimates, If the mass velocity of propagation of the energy-
release zone is very large, the motion has practically no effect and the density does not change. The ener-
gy qot released in a layer of thickness Mt/p, leads to a pressure p,, of the order dyp, (¥ -1)/M; i.e.,
pm/ qp ~ 1/M and, consequently, for large M° the value of pm/ qp decreases with increasing M. Accordingly,
there is a certain "optimum" value of M for which the pressure is maximum. This also agrees with the
data of Fig. 3.

Sinee the problem is self-similar, all particles of the material follow the same path on the state
diagram. Figure 5 shows certain results of numerical solutions in the coordinates pV, 9V for various q°
and M° = 1/6, For other M? the picture is qualitatively the same. It is clear that at the beginning there is
a sharp rise in pressure from the initial point p = 0, p = p, along the curve close to the shock adiabat of
the cold material, and subsequent relief for continued energy release. For a decrease in the flux density
q° to values corresponding to q0 ™~ 0.2 the curves for p(p) pass below the critical point Pes Pg through the
two-phase region D. In this case they intersect this boundary twice (points a and b for the curve q° = 0.1).
Between such points there is a gradual quasiequilibrium volumetric evaporation and an increase in the
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vapor fraction 7 from 7 = 0 (condensed matter) to 1 = 1 (completely vaporized matter). For comparison,
the dashed-dot curves of Fig. 5 show relief adiabats [18]. It is clear that in self-similar flow with heating
the behavior is very different from adiabatic, particularly outside region D, and the pressure decreases
much more slowly. In order thatthe material be evaporated initially, i.e., in order that the curve for p(p)
fall into region D, the material must expand. Thus, in spite of possible strong heating of material close to
the shock front true evaporation can occur only in the relief region and the shock wave can move in the con-
densed material. For large q° the curve for p(p) passes above the critical point and the concept of evapora-
tion cannot be applied at any definite points.

In conclusion, we note that condensed matter has been treated as a fluid. The problem under consid-
eration can be generalized by infroducing both liquid and solid phases and a stress tensor instead of a sin-
gle pressure,
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